67 research outputs found

    On Gosper's Pi(q) and Lambert series identities

    Get PDF
    In an interesting article entitled `Experiments and discoveries in q-trigonometry'', R. W. Gosper conjectured few beautiful Pi(q) and Lambert series identities. Many people have attempted confirming some of those identities in the Gosper's list, mainly by using Gosper's q-trigonometric identities. In this paper we either prove or disprove all the Pi(q) and Lambert series identities in the Gosper's list by mainly using S. Ramanujan's theta function identities and W. N. Bailey's summation formula. In the process, we obtain three new Gosper kind of identities

    Robust leakage-based distributed precoder for cooperative multicell systems

    Get PDF
    Coordinated multipoint (CoMP) from long term evolution (LTE)-advanced is a promising technique to enhance the system spectral efficiency. Among the CoMP techniques, joint transmission has high communication requirements, because of the data sharing phase through the backhaul network, and coordinated scheduling and beamforming reduces the backhaul requirements, since no data sharing is necessary. Most of the available CoMP techniques consider perfect channel knowledge at the transmitters. Nevertheless for practical systems this is unrealistic. Therefore in this study the authors address this limitation by proposing a robust precoder for a multicell-based systems, where each base station (BS) has only access to an imperfect local channel estimate. They consider both the case with and without data sharing. The proposed precoder is designed in a distributed manner at each BS by maximising the signal-to-leakage-and-noise ratio of all jointly processed users. By considering the channel estimation error in the design of the precoder, they are able to reduce considerably the impact of these errors in the system's performance. The results show that the proposed scheme has improved performance especially for the high signal-to-noise ratio regime, where the impact of the channel estimation error may be more pronounced

    Power allocation strategies for distributed precoded multicell based systems

    Get PDF
    Multicell cooperation is a promising solution for cellular wireless systems to mitigate intercell interference, improve system fairness, and increase capacity. In this article, we propose power allocation techniques for the downlink of distributed, precoded, multicell cellular-based systems. The precoder is designed in two phases: first the intercell interference is removed by applying a set of distributed precoding vectors; then the system is further optimized through power allocation. Three centralized power allocation algorithms with per-BS power constraint and diferente complexity trade-offs are proposed: one optimal in terms of minimization of the instantaneous average bit error rate (BER), and two suboptimal. In this latter approach, the powers are computed in two phases. First, the powers are derived under total power constraint (TPC) and two criterions are considered, namely, minimization of the instantaneous average BER and minimization of the sum of inverse of signal-to-noise ratio. Then, the final powers are computed to satisfy the individual per-BS power constraint. The performance of the proposed schemes is evaluated, considering typical pedestrian scenarios based on LTE specifications. The numerical results show that the proposed suboptimal schemes achieve a performance very close to the optimal but with lower computational complexity. Moreover, the performance of the proposed per-BS precoding schemes is close to the one obtained considering TPC over a supercell.Portuguese CADWIN - PTDC/ EEA TEL/099241/200

    Acute kidney disease and renal recovery : consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup

    Get PDF
    Consensus definitions have been reached for both acute kidney injury (AKI) and chronic kidney disease (CKD) and these definitions are now routinely used in research and clinical practice. The KDIGO guideline defines AKI as an abrupt decrease in kidney function occurring over 7 days or less, whereas CKD is defined by the persistence of kidney disease for a period of > 90 days. AKI and CKD are increasingly recognized as related entities and in some instances probably represent a continuum of the disease process. For patients in whom pathophysiologic processes are ongoing, the term acute kidney disease (AKD) has been proposed to define the course of disease after AKI; however, definitions of AKD and strategies for the management of patients with AKD are not currently available. In this consensus statement, the Acute Disease Quality Initiative (ADQI) proposes definitions, staging criteria for AKD, and strategies for the management of affected patients. We also make recommendations for areas of future research, which aim to improve understanding of the underlying processes and improve outcomes for patients with AKD

    Development and validation of a predictive model for American Society of Anesthesiologists Physical Status

    Full text link
    Abstract Background The American Society of Anesthesiologists Physical Status (ASA-PS) classification system was developed to categorize the fitness of patients before surgery. Increasingly, the ASA-PS has been applied to other uses including justification of inpatient admission. Our objectives were to develop and cross-validate a statistical model for predicting ASA-PS; and 2) assess the concurrent and predictive validity of the model by assessing associations between model-derived ASA-PS, observed ASA-PS, and a diverse set of 30-day outcomes. Methods Using the 2014 American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) Participant Use Data File, we developed and internally cross-validated multinomial regression models to predict ASA-PS using preoperative NSQIP data. Accuracy was assessed with C-Statistics and calibration plots. We assessed both concurrent and predictive validity of model-derived ASA-PS relative to observed ASA-PS and 30-day outcomes. To aid further research and use of the ASA-PS model, we implemented it into an online calculator. Results Of the 566,797 elective procedures in the final analytic dataset, 8.9% were ASA-PS 1, 48.9% were ASA-PS 2, 39.1% were ASA-PS 3, and 3.2% were ASA-PS 4. The accuracy of the 21-variable model to predict ASA-PS was C = 0.77 +/− 0.0025. The model-derived ASA-PS had stronger association with key indicators of preoperative status including comorbidities and higher BMI (concurrent validity) compared to observed ASA-PS, but less strong associations with postoperative complications (predictive validity). The online ASA-PS calculator may be accessed at https://s-spire-clintools.shinyapps.io/ASA_PS_Estimator/ Conclusions Model-derived ASA-PS better tracked key indicators of preoperative status compared to observed ASA-PS. The ability to have an electronically derived measure of ASA-PS can potentially be useful in research, quality measurement, and clinical applications.https://deepblue.lib.umich.edu/bitstream/2027.42/152155/1/12913_2019_Article_4640.pd
    corecore